
C O M P L E X P R O P A G A T O R S I N P E R T U R B A T I O N T H E O R Y B1257 

(where X+
2: u+ --» ZL. means s(Eu+} \+

2(s)(EzV-). Further, 
we obtain 

X+2: L±-+H± X_2: £ ± - > f f = F 

H±->HT H±->L 

S^. —> R S± —> *S*=F . 

The mapping of other parts of the real s axis can be read 
off Fig. 18. We have defined X±

2 such that X+2>X_2 for 
real s<0 and 4t<s<(W-l)2, but A+2<A__2 for real 
s> (W+l)2, The curves S and H are in fact defined by 
the conditions (B4). 

I. INTRODUCTION 

UN T I L the rather recent introduction of self-
consistent (bootstrap) methods using the N/D 

formalism,1 it is fair to say that most calculations of 
dynamical effects in strong interactions have been 
single-particle exchange calculations. However, it is 
worth asking how we may go further, and include re-
scattering terms, which arise from the fact that in a 
multiparticle final state more than just one pair of 
particles may interact strongly. A typical reaction is 
shown in Fig. 1, in which a pion is produced in pion-
nucleon scattering. In the final state wirN, there is the 
possibility of three interactions: the two wN ones, and 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f Present address: Service de Physique Theorique, C.E.N., 
Saclay, France. 

1 See, for example, F. Zachariasen, Phys. Rev. Letters 7, 112, 
268 (1961); G. F. Chew, Phys. Rev. 129, 2363 (1963); and L. A. P. 
Balazs, ibid. 128, 1939 (1962). 

After these lengthy preliminaries, the properties of 
f(s,W21X2) on the nearest sheets can be listed as follows: 

(a) fpp: X2 singular only if sGu±; A+2 not singu
lar, X_2 singular 6 % 2 ,j>c\ 

(h)fpq=fqp: for s & ± , w^ both X±
2 singular; 

for sE:U±y X+
2£fl±2 is singular, 

X_ 2 G^ ±
2 not singular. 

We remark tha t for fqp, as s crosses X+ from v+ to u+, 
X_2 crosses the X2 cut from below between 0 and 4 
[cf. (B4)] , having been singular on the p sheet in X2 

for S&+. This singularity passes smoothly on the 
Riemann surface to the q sheet in X2 as s enters u+. 

the 7T7T. Figure 2 shows a rescattering term representing 
the production of a pion and a (3,3) nucleon isobar, the 
isobar then decaying and its decay pion rescattering 
from the pion. We call the amplitude for this process F. 
The problem is to calculate F as a function either of the 
incoming energy W or of the mass of the two pions y/s? 

Graphs similar to Fig. 2 have been discussed quite 
extensively.3 Whereas single-particle exchange graphs 
lead to poles, these give logarithmic singularities—often 
called anomalous thresholds—in W or s, and some effort 
has gone into seeing if these singularities lead to observ-

2 1 am indebted to Dr. S. F. Tuan for stimulating my interest in 
this type of graph. I have been informed by Dr. Tuan that a cal
culation, similar to that reported here, has been done by Dr. T. T. 
Wu and himself. 

3 For example, bv V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 
1221 (1961) [English transl.: Soviet Phys.—JETP 14, 871 
(1962)], for r decay, and by V. V. Anisovich, A. A. AnsePm, and 
V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 42, 224 (1962) [English 
transl.: Soviet Phys.—JETP 15, 159 (1962)], for pion production 
reactions near threshold. 
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The effects of logarithmic singularities in rescattering processes are investigated. The reaction wN —> TTWN 
is considered, but treated purely as an S-wave, spinless model. A particular triangle graph is analyzed in 
detail; it contains as an intermediate state the (3,3) nucleon isobar i*, which is described as a spinless 
particle of complex mass. The graph is calculated from a dispersion relation as a function of the mass s 
of the two pions in the final state, for low values of the over-all cm. system energy W. The relation is then 
analytically continued in W. For a narrow range in W, an enhancement of the square of the amplitude is 
found near s—4 (the pion mass is unity). The analogous enhancement also appears in the W channel near 
W—I-{-l, for a small range of s only, near s=4 . The prominence of the effect depends on the width of / , 
being closely connected with the nearness to the physical region of one of the two logarithmic singularities 
(anomalous thresholds) of the graph: this distance increases sharply with the isobar width. The positions of 
the singularities are interpreted as the phase-space limits for the simultaneous production of states with 
mass s and / . The conclusion is that such a "double excitation" process leads to an enhancement of the 
triangle amplitude only if, in general, s and / fall in certain narrow ranges. The implications of this result 
for models of the higher resonances in the elastic channel CirN —> TTN) is briefly discussed. 
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» V 
FIG. 1. The process wN —> wirN. 

able effects. The first to examine this question were 
Landshoff and Treiman,4 but the processes they con
sidered, which involved exclusively stable particles, all 
had, for one reason or another, very small cross sections. 
This was remedied by Aaron5 who showed that if an un
stable particle were introduced as an internal line of the 
graph, which was then calculated as a function of s, 
there was the possibility of an observable effect at the 
high end of the s range. Aaron included the unstable 
particle in the s channel, but, as we shall see below, it is 
questionable whether a simple application of dispersion 
theory or perturbation theory is quite correct in that 
case. We shall include the unstable particle in the W 
channel, the crossed channel with respect to s, and shall 
argue that the process can then be calculated straight
forwardly, as a function of s.Q 

The reaction represented by Fig. 2 depends on there 
being two simultaneous strong final-state interactions. 
Several authors have studied these reactions recently,7-10 

particularly in order to see whether processes such as 
Fig. 2 lead to an enhancement of one or both of the 
production (wN —> TWN) and elastic (irN —» irN) ampli
tudes. For the one graph we consider, this question can 
easily be related to the mechanism suggested by Peierls11 

for the generation of the higher elastic pion-nucleon 
resonances. The structure in the graph, in the W 
channel, is the one-pion exchange pole in the reaction 
TT+I —* 7r+7r+iV, and insofar as this pole leads to 
singularities apparently near the physically region, one 
expects some enhancement of F, with a consequent 
effect in the coupled elastic amplitude. In fact though, 
our calculation shows that there is no enhancement of F 
in general, but only for a narrow range of s near the 
threshold s=4 (the pion mass= 1). 

The fact that at least this particular enhancement 
appears only for a restricted range of the variables near 
certain thresholds may be relevant to other mechanisms 
for the generation of elastic resonances. Nauenberg and 
Pais12 have suggested that an inelastic threshold itself 

4 P. V. Landshoff and S. B. Treiman, Phys. Rev. 127, 649 (1962), 
hereafter referred to as LT. See also P. V. Landshoff, Phys. Letters 
3, 116 (1962). 

5 R. Aaron, Phys. Rev. Letters 10, 32 (1963). 
6 F. R. Halpern and H. L. Watson, Phys. Rev. 131, 2674 (1963), 

have considered somewhat analogous graphs, from the viewpoint 
of detection of anomalous thresholds. 

7 C. Bouchiat and G. Flamand, Nuovo Cimento 23, 13 (1962). 
8 R. F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963). 
9 B . d'Espagnat and F. M. Renard, Nuovo Cimento 30, 556 

(1963). 
10 P. K. Srivastava, Phys. Rev. 131, 461 (1963). 
11 R. F. Peierls, Phys. Rev. Letters 6, 641 (1961); and S. F. 

Tuan, Phys. Rev. 123, 1761 (1962), for application to hyperon 
resonances. 

12 M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962). 

may produce a "cusp" effect in the elastic channel, while 
Ball and Frazer13 have argued that the elastic amplitude 
will be peaked near a point where the production cross 
section is rising sharply. From the mechanism we con
sider, Fig. 2, such a rise in the production cross section, 
it it occurs at all, does so only near definite thresholds; 
hence it may serve to accentuate the cusp effect. 

We shall calculate F from a dispersion relation in s, 
the weight function / being evaluated from Cutkosky's 
rules14 (Sec. IV). For these manipulations, it is assumed 
that the isobar may be treated as a particle of complex 
mass. We find that /has logarithmic singularities at two 
points sa and Sb, which are, in general, complex, and 
whose positions depend on W. These in turn produce 
singularities of F at sa and sb, which for small W are not 
on the physical sheet of F although one of them Sb may 
be near the physical region. As W increases, sa crosses 
the contour of integration in the dispersion relation, 
necessitating a deformation of the contour; sa then 
appears on the physical sheet of F, although too far from 
the physical region to produce any effect. In Sec. I l l we 
first study the notion of these singularities, deduced 
equivalently from perturbation theory, in order to 
understand how to define the dispersion integral in all 
cases. At the outset, sa and Sb are introduced in Sec. II 
by a suggestive kinematical calculation. The results of a 
numerical evaluation of the integrals is given in Sec. V. 
Finally, in Sec. VI we summarize the main features of 
the results, and relate them to the possibility of effects 
in elastic processes. We emphasize that, throughout, the 
essential complications of spin and isotopic spin are 
ignored. 

II. THE PHYSICAL NATURE OF THE SINGULARITIES 

Cutkosky14 has given a kinematical argument which 
makes it plausible that there should be anomalous as 
well as normal thresholds. Consider the diagram shown 
in Fig. 2. This represents pion-nucleon scattering with 
single pion production, via an intermediate state of a 
pion (mass unity) and a (3,3) nucleon resonance 
(mass / ) . We are interested in the behavior of this 
process, as a function of the mass of the two pions in the 
final state (s), for a range of values of the initial energy 
in the over-all cm. system (W). For the moment, let us 
ignore the fact that the isobar has a width; we take / to 
be real. Once W is greater than 7+1 , the diagram may 

FIG. 2. A rescattering, or triangle 
graph, contribution to TN —-> -rrxN. 
The double solid line is a (3,3) 
nucleon isobar i". Ti, T2, T$ stand 
for the vertices iric —>inr, TTN —» irl, 
7rl —* iV, respectively. 

13 J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961). 
14 R. E. Cutkosky, J. Math. Phys. 1, 49 (1960). We remark that 

we are using "anomalous" in a general sense to refer to any 
threshold other than a normal one. 
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represent a real process—namely, production and sub
sequent decay of the isobar, with rescattering of its 
decay pion. There will, however, only be some range of 
s for which this process is kinematically allowed; and 
the end points of this range are then, in some sense, 
thresholds. 

The range of s is easy to find. In the cm. system of the 
two pions, write the four-vector of the initial state as 
(£1= (W2+f)l/2, p) and that of the nucleon (mass M) 
in the final state as (E2= (M2+p2)m, - p ) , where 
p = I p I is the magnitude of the 3-momentum of the 
nucleon. Then 

and 
p2= [s2-2s(W2+M2) + (W2-M2)22/4s 

s=4g2+4, 

where q is the magnitude of the 3-momentum q of the 
pions. Also, 

£ x = (S+W2-M2)/2VS, - £ 2 = (s+M2-W2)/2Vs. 

Energy conservation at the vertex Tz gives 

(E2+Ws)2=I2+P2+q2-2pq cos0, 

where 6 is the angle between p and q. For real 6, s must 
therefore lie in the range defined by 

-2pq<M2+l+E2Vs-P<2pq. (1) 

Introducing the variables x, y, and z by 

s=2(l-x), M2=I2+l-2Iz, W2=I2+l-2Iy (2) 

the end points of the range are given by the roots 
of 

x2+y2+z2-2xyz-l = 0. (3) 
Hence 

Xb= lyZ- { (y2_ 1) (22_ l)}l/2]<X<tfa 

= [yz+{(y2-l)(z2-l)y^ (4) 

with a corresponding range for s: Sb<s<sa. These are 
the usual anomalous thresholds. 

Since / is unstable, we have z>l, so that for xa and 
xi to be real we need y< — 1, or W>IJr\. In other 
words, when the incident energy is such that the pion-
isobar state can be formed, there is a range of s for which 
3-momentum conservation also may be satisfied, so that 
both the (2ir,N) and the (w,I) states propagate freely. 
It is now simple to interpret this range on a Dalitz plot 
for the three-particle state 7T7r7V, taking the two mass 
variables to be those associated with the wN and the ww 
systems, \/t and \ A respectively, say. For a given W, 
the plot extends over a limited region in the \A—\A 
plane, which is just that corresponding to Eq. (1). The 
range of s that we have found is the one for which, given 
a value of W, the line \/s=constant, may interest the 
isobar band \/t=I, This is illustrated in Fig. 3. R, the 
boundary of the elliptical-shaped region, is a function 
of W, and hence so are sa and s &. 

We may refer to the end points of this range as 

FIG. 3. Dalitz plot in the \A, 
\Jt plane. The double line is the 
isobar band \/t=I. 

R(W) 

"double excitation/' rather than anomalous, thresholds. 
At one or both of them, we may expect some type of 
threshold singularity. Perturbation theory implies (see 
Sec. Ill) that the singularities are logarithmic, while 
the dispersion relation calculation of Sec. IV shows that, 
to avoid an infinity in the physical region, we have to 
give / an imaginary part, representing the width of the 
isobar. Our purpose is to see what effect the resulting 
pattern of singularities has on the amplitude. First, we 
discuss their motion in detail. 

III. THE SINGULARITIES IN 
PERTURBATION THEORY 

A. Treatment of the Isobar 

We now regard Fig. 2 as a perturbation thepry graph, 
assuming that the isobar may be treated as a particle of 
complex mass, the finite (negative) imaginary part 
representing the width. 

This procedure may seem questionable. One difficulty 
is the following. One might say that corresponding to 
the two-particle pion-isobar state, there should be a 
branch point in W2 at (7+1)2, on the first (physical) 
sheet of the two-sheeted surface defined by the elastic 
cut at (M+1)2. However, it is known15 that this branch 
point is not on the physical W2 sheet, but rather on the 
sheet reached by crossing the real W2 axis between the 
2- and 3-pion production thresholds. Hence, a simple 
replacement of the isobar by a complex mass may be 
misleading. In our case, however, the isobar occurs in a 
crossed channel with respect to the variable of interest 
s, so that we might hope that this type of objection 
would not arise. 

In fact, an analysis can be made in terms of the square 
of the internal mass X2 of the pion-nucleon system form
ing the isobar.16 The full amplitude, including states of 
all values of X2, is written as 

H. g(s,w*)= / <zxvx2)F(s,x2,jr2), (5) 

where <r(X2), essentially the spectral function of the 
pion-nucleon propagator, has a square-root cut from 
(M+1)2 to + 00 y and where c is a contour along the real 

15 D. Zwanziger, Phys. Rev. 131, 188 (1963). See also Ref. 16. 
1 61. J. R. Aitchison and C. Kacser, Phys. Rev. 133, B1239 (1964), 

preceding paper. 
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axis above this cut. F is the amplitude for the case in 
which the square of the mass of the TTN system is X2. The 
isobar is included as a pole in cr(A2), on the second X2 

sheet of the propagator, below the real axis at \2=P. 
The meaning then ascribed to Fig. 2 is that it represents 
F(s,P,W2), the residue of F(s,\2,W2) at the pole X2 = P , 
and the continuation to complex values of X2 of the con
ventional amplitude with X2 real. Thus g contains F as 
a part. 

The result of this analysis is that peaking effects, due 
to singularities of g near the physical region, are cor
rectly calculable by treating the isobar as a particle of 
complex mass—that is, the nearby singularities of 
F(s,P,W2) and g(s,W2) are the same. On the other hand, 
this may be by no neans true of the distant singularities 
—although of course, by definition, these give no physi
cal effect, apart from providing a smooth background. 

In the following we treat F(s,W2) exclusively (sup
pressing from now on the P dependence). We must 
remember, however, that it is finally only the peaking 
effects which are to be taken as representing correctly 
the behavior of g; the remaining background we are 
unable to calculate properly. 

B. The Motion of the Singularities 

The locations of the singularities of the graph of 
Fig. 2 in perturbation theory are well known.17 They lie 
on the surface 2 defined by 

x2+y2+z2— 2xyz—1 = 0 

exactly the equation [Eq. (3)] defining the points xa, 
Xb, of Sec. II. In the present application, z is a fixed com
plex number, and y is a complex linear function of W2. 
[cf. Eqs. (2).] The singularities sa, Sb for various W2 are 
then given by the roots x{y) of 2 for a given z. We 
emphasize that sa and Sb are functions of W2, though we 
shall usually not indicate this explicitly. 

We review the results of Ref. 17. Let x=xi-\-ix2, 
y = yi-\-iy2, z=Zi+iz2. The surface 2 is a 4-variety in 
the 6-dimensional (xyz) space defined by 

xi2+yi2+zi2= Ixxy&x— 1 
— (x2

2+y2
2+z2

2— 2xiy2z2—2x2y\Z2— 2x2y2Z!) = 0, (6) 

%i%2+yiy2+ZiZ2— x2yiZx— Xiy2zi— Xiyiz2=0. (7) 

Consider first the mapping of the real y axis in 2. This is 
a quartic in the x plane, for fixed z9 with four double 
points ±2, ±2*. It therefore degenerates18 into two 
conies, an ellipse and a hyperbola, which we may 
write as 

X\ X2 X\ X2 

1 = 1, and 1 = 1 
a2 b2 c2 d2 

17 A detailed account with full references is given by G. 
Bonnevay, I. J. R. Aitchison, and J. S. Dowker, Nuovo Cimento 
21, 1001 (1961). Note that in this paper a complex value for xf y 
and z was associated with a complex external, rather than internal, 
mass. 

18 George Salmon, Higher Plane Curves (Chelsea Publishing 
Company, New York, 1879), 3rd ed., p. 29 ff. 

y2 

4 

FIG. 4. The mapping 2 in the complex x and y planes. The 
degenerate quartics forming the mappings of the real axes are 
shown by long dashed lines. The mapping, in the x plane, of a line 
in the y plane just below the axis is shown by short dotted lines, 
corresponding points being indicated by numbers. The mapping in 
the x plane of the line L in the y plane is shown by solid lines 
labeled xa and #&. When a pair (x,y) is in the shaded region, that 
point is singular on the physical sheet. 

where we find 

a^iC^+^+^+IC^+s^+l)2-^2}^], 
Z>2 = i[(*l2+*22- l) + { (Zl2+Z22- 1)2+W}1/21, 

^ = i [ (2 l 2 +22 2 +l ) - { (2 l 2 +2 2
2 +l ) 2 -4S l 2 } 1 / 2 ] , 

<P = KW+Z22- 1) - { (*l2+*22- 1)2+4*2
2}1/2] . 

Since 2J is symmetric in x and y, the same curve, in the 
y plane, shows the mapping of the real x axis in 2. To 
resolve ambiguities at the turning points, we give y a 
small negative imaginary part; the correspondence be
tween the two x roots of 2J and the values of y is shown 
in Fig. 4 by numbers along the dotted lines. In summary, 
whenever y lies on the quartic, one of the corresponding 
x roots is real. 

In our case, as W2 varies, y follows a line such as L, 
so that xa and Xb move as shown by the solid lines, 
appropriately labeled. Now y passes through the ellipse 
to the left of 3>i=0 before the hyperbola, so that Xb 
crosses the real axis before xa; also xa crosses at a more 
negative value than previously. 

C. The Two Sheets of the Amplitude 

The amplitude of Fig. 2 has a normal threshold 
(square root) singularity at s=4, or %— — 1; the s plane 
is cut along the positive real axis from 4 to °o, denning 
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FIG. 5. The motion of the singularities sa, Sb in the s plane 
for the case of a real mass of the isobar. sa and Sb meet 
at s = [ ( / + l ) 2 — I f 2 ] / / when W=7+1; sh encircles s = 4 when 
W = 2 (72+1) — M2. The arrows show the direction of W increasing. 

a two-sheeted surface. Similarly, there are cuts 
— l > x > —oo, — l>;y> — oo, shown as thick lines in 
Fig. 4. The first, physical, sheet in x is defined by 
—7r<arg(x+l)<7r, and the physical values of x(s) are 
obtained by approaching the cut from below (above). 
When we cross a cut, we pass onto a different sheet. 

Reference 17 established that a singularity xa is only 
on the physical sheet when y is in the lower left quadrant 
of the hyperbola; this region, and the corresponding 
singular x region are shown hatched in Fig. 4. As W2 

increases, therefore xa will appear on the physical sheet, 
as it crosses the real axis and enters the shaded region. 
For that W2 for which xa lies on the negative real axis, at 
x0 say, there will be an infinity in the amplitude at 
So= 2(1 — XQ). If I, and hence y and zp are purely real, x0 

occurs first at the double point —z, for y= — l9 the 
hyperbola having collapsed onto the real axis, and xa 

and xb being both on the real axis, and coincident. Then 
s o = s = [ ( / + l ) 2 - M 2 ] / / , for W=I+1. Figure 5 shows 
the motion of the singularities in the s plane for the 
case I real. This situation has been discussed in rather 
different contexts by Liu and by Bronzan and Kacser.19 

The extent of the physical phase space for s is 4< s< si 
= (W—M)2. Hence, s0 falls in the physical region if 
( / + 1 ) ( / - ( M + 1 ) ) ( / - ( M - 1 ) ) > 0 . If, therefore, I is 
unstable, there will be an infinity in the amplitude at s0 

when W reaches 7 + 1 . This difficulty is removed by the 
procedure of giving I a finite imaginary part 72. It 
turns out that s0 increases rapidly as 72 becomes 
different from zero, but is thereafter insensitive to the 
precise value of 72. In Fig. 6, the solid lines are paths of 
sa and sh for the (3,3) isobar case: / = 8.91-~0.32i, in 
units of the pion mass. In these units, s~6. sa and Sb 
now become separated with respect to s: Sb never reaches 
the real axis and hardly moves to the right of s=4, while 
sa crosses far to the right of s, at $0=24.1 when 
W= 11.62. For this W, the singularity sa is then not in 
the physical region, which only extends to Si= 23.62. 
This feature is independent of the precise value of I2; 
in Fig. 6 we have also plotted the trajectories for 
7=8.91—0.02* (this represents a width of about 7 MeV 

19 L. S. Liu, Phys. Rev. 125, 761 (1962); J. B. Bronzan and 
C. Kacser, ibid. 132, 2703 (1963); also C. Kacser, ibid. 132, 2712 
(1963). 

for the isobar). Now, Sb follows more closely its path for 
72=0, but never reaches the real axis for s>4; and sa) 

although much closer to the real axis, still crosses outside 
the physical region. 

Perturbation theory, therefore, shows that there is a 
singularity sa on the physical sheet, with lmsa<0, for 
all W greater than some critical value which depends 
on 72 but which is roughly 7i+l(7=7i+t72) . However, 
this point is not near the physical region of s, which is 
the limit onto the top edge of the cut. It is not expected 
to produce any effect: The distance between sa and the 
physical region has to be reckoned by going around s=4, 
not through the cut. But there remains the singularity 
sb; and if 72 is small, there will be a range of W—corre
sponding to the range I+l<W<[2(I2+l)-M2J/2 in 
the case 72=0—for which Sb is singular on the wwphysi-
cal sheet below the cut; this point is near the physical 
region. Here again we need a finite 72 to save us from an 
infinity of the amplitude; in this case, though, we shall 
find (in Sec. V) a peaking of the amplitude in the 
vicinity of Sb for those W}§ for which s& is just below the 
real axis. We remark that if 7 were stable, 7 < M + 1 , 
there would be no W for which either sa or Sb was near 
the physical region; this is our reason for studying a 
graph with an unstable intermediate particle. 

IV. CALCULATION OF THE AMPLITUDE FROM 
A DISPERSION RELATION 

A. The Weight Function 

The amplitude F(s,W2) for Fig. 2 is calculated from 
the dispersion relation 

F(s,W2) = - / -ds' . (8) 
ir J A s'—s—ie 

The integration is along a line C just above the real 
axis. The weight function / is found from Cutkosky's 
rules,14 and the result is familiar. We wish, however, to 

REAL PART OF SQ,Sb 

FIG. 6. The motion of sa and Sb when the isobar is given a 
complex mass: 7 = 8.91-0.32^ (solidline), 7 = 8.91-0.02^ (dashed 
line). sa crosses the real axis at s0. The insert shows the region near 
5 = 4 in more detail. 
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-8333 
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FIG. 7. The cuts of R. 

give some of the details, in order to relate this section 
to Sec. II. 

/ is proportional to the Feynman amplitude with the 
two internal pions on their mass shells. In the cm. 
system of the two pions, and with the notation of 
Sec. II, 

r1 q I 
f(s) = —dcosddt, (9) 

where P and Q are, respectively, the 4-momenta of the 
final-state nucleon and the pion associated with the 
isobar.20 We have suppressed three factors representing 
the vertices: We are taking these to be constant. 

The denominator in Eq. (9) is 

D=iP+l+E<s/s+2pqz-P9 

so that there will be singularities of / when D vanishes 
at 2=dbl, that is, when 

'M*+l-P+E*\/s=±2pq. 

These are just the end points sa, Sb of the kinematical 
region described in Sec. II. [cf. Eq. (1).] Nor is this un
expected: / is calculated by requiring the two pions to 
have their real mass, and the zeros of D correspond to 
putting the third internal particle I on its mass shell. 
At the singular points, all the internal particles propa
gate freely, and these points are just what the calcula
tion of Sec. II gave us. The singularities are logarithmic 
since the result of the integration in Eq. (9) is 

/= 
a+R 

•In-
2 (-20"* a- R 

(10) 

where, in the notation of LT, 

R=(-KL)ll\ -K=(s-Si)(s-s2), L=s(s-A) 

a==s2+s[2P-M2-W2-22, 

Sl=(W-M)2, s2=(W+M)2. 

The cuts of / must now be specified. First, R has 
branch points at 0, 4, $i and s2: the definition of R is 
shown in Fig. 7. To make explicit the singularities sa, $b 
we rewrite / as 

/ = " •ln(a-R)-
2(-X) 1/2 

•ln(a?-R2) 
(-Kyi* 

and we observe that 

a?+KL= 16sP(%2+y2+z*- 2%yz-1). 

20 This is, of course, the s-wave projection of Jthe isobar pole in 
the crossed channel of the reaction tnv —> wNN, and the simple 
explicit appearance of / in the denominator of Eq. (9) is essentially 
the reason for our being able to calculate straightforwardly with 
a complex value of / . See Ref. 16. 

Hence 

/ = • 

( - * ) 1/2 
ln(a-JJ) 

2(-Kyf2 
\li4:SP(s-Sa)(s-Sb) (11) 

and a—R is regular at s=sa. The resulting cuts of / are 
shown in Fig. 8 for a typical W, below the point at 
which sa crosses the real axis: We define the logarithms 
to be on their principal branches when W is below 
Re(J)+l. We refer to this as the normal case. 

B. The Dispersion Relation in the Normal Case 

Consider now a W less than Re(7)+1 for which, 
referring to Fig. 6, sa and Sb have finite imaginary parts 
of opposite signs. For this case, the result of perturba
tion theory is that F is not singular on its physical sheet, 
so that the integral in Eq. (8) may consistently be taken 
along the real axis: sa and sb, though singularities of / , 
are not so of F. This may also be verified for such values 
of W by making successive continuations in y and s, 
starting from a real stable value for J, for which the 
statement certainly holds. 

However, as W increases to Wo say, we notice that, 
given the determination of R by Fig. 7, (a+R) may 
vanish at some point s0 in the range ($i,s2), since a 
has a negative imaginary part. Hence /will be undefined 
at so. In fact, So is the point at which sa crosses the real 
axis, and it is, as we saw in Sec. I l l , indeed in the range 
(siyS 2). We next consider how to modify the representa
tion of Eq. (8) to include such higher values of W. 

C. Continuation of the Representation in W 

We follow the method of Mandelstam,21 and continue 
the representation (8) in the energy W. Referring to 
Fig. 6 and to Eq. (11) for /, we see that as W increases, 
the root Sb encircles s=4 from below, never crossing 
the integration contour, so that arg(s—Sb) goes 
smoothly from positive to negative values. On the other 
hand, sa moves towards the integration path at s0, to 
the right of si. To continue Eq. (8), we have to distort 
the contour C downwards into the lower half s plane 
(into the second s sheet) away from the advancing sa, 
as shown in Fig. 9. Furthermore, as sa crosses, arg(s—sa) 
changes from — w to w for all points to the left of s0, but 
is continuous to the right of So. To make the correct 
continuation, we note that the cut La, attached to sa, 

' - * *sb 

FIG. 8. The cuts of / in the case lm(sa)>0. 

21 S. Mandelstam, Phys. Rev. Letters 4, 84 (1960). 
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FIG. 9. The deforma
tion C down into the sec
ond s sheet (shown* by 
the dotted part of C) to 
avoid the advancing sin
gularity s0. 

has swept over the integration contour to the left of s0, 
so that those points are now on the second sheet of 
La\ hence we have to subtract liri from the value of 
In (s—sa). We can, of course, equally well define La as 
shown in Fig. 10: a piece between SQ and sa in the lower 
half plane, following the trajectory of sa, and the rest 

and the definition of R, 

1 r8i / 2wi \ 
F(s,W*) = - / [f(s')+ ) -

1 rSQ / 2v \ a 

TJS1 V (+K(s')yi*/s' 

+
l- f ^W 
7T J sQ S — S 

s—te 

ds' 

s 

+FA, (12) 

where 

FA=- <f(f(s') — 
ITT \ ds' 

miss's 

FIG. 10. The cuts of / in the case lm(sa) <0. 

along the real axis — °o <s<So. Then, for s<So, we do 
not have to subtract the 2iri. For the machine calcula
tion described below, the first definition of La is used 
consistently. 

and P is the dotted path of Fig. 9. Since f(s') increases 
by 2T/(K(s'))m on encircling sa, we have 

1 r8 

IT J SQ 

-2T ds' 

(+K(s')y'2s'-s 

The representation (8) then becomes,22 using Eq. (11), one finds 
The integrals not involving / can be done exactly, and 

M 1 /"I J(S') 1 /-/(*' 
F(s,W*) = ~ / — 7ds'+- / — 

it J A s'—s—ie IT J si s'— 

;l„j(l+,[ 

:"{('-[• 

2t 

( ( S l - * ) ( 5 . - 5 » l f t " 

2* 

(S2—S)(sa—Sl) 

(si—s)(s2—s, 

(*i-*)(*2-4)-|1 /2 ' 

^T)/(^rsKSa~slT)\ 

<(*!-*) ( * - * ) ) W (s2-s)(s1-i). D/KeHni-̂ -*̂ - -
As W increases further, sa moves further into the lower 

half plane, and si moves to the right of s0. From Eq. 
(12), we notice that s=si is now a singularity of the 
spectral function, and hence of F on its second sheet (it 
is a "second-type'J singularity.23) But from Eq. (13), 
we see directly that s0 is not a singularity of F, and 
further continuation in W is trivial. 

We remark that sa is indeed now a singularity of F, 
although one can see qualitatively that its effect is likely 
to be small. If, as is the case, the imaginary part of P is 
small compared to the real part, sa will lie close to the 
real axis; but although it is on the physical sheet, it is 
on the lower (^physical) side of the cut. 

V. NUMERICAL RESULTS 

The integrals in Eqs. (8) and (13) have been done, 
using complex arithmic FORTRAN, on the IBM 7094 at 

22 See also a recent UCLA preprint by C. Fronsdal and R. E. 
Norton, 1963 (unpublished), although these authors have not 
explicitly considered a complex internal mass. 

23 D. B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. Polking-
horne, J. Math. Phys. 3, 594 (1962). 

BNL. Our purpose is to investigate by explicit calcula
tion the effect of the logarithmic singularities: of sa on 
the high mass end of the TIT spectrum, and of Sb on the 
low mass end, as W varies. 

In Fig. 11 (a) we have plotted the square of the ampli
tude, | F |2, versus s, for some typical values of W. (A 
factor l/7r is suppressed from now on.) This, and Figs. 
11(b), 12(a) and (b), and 14, which we shall describe 
presently, should be looked at in conjunction with Fig. 6. 
We see that s0 produces no effect, but that for W^ 10.0 
there is a characteristic rise in \F\2 near s=4, a result 
similar to that of Halpern and Watson6. From Fig. 6 we 
see that this W is just the one for which sb is near the 
real axis in the lower half plane. 

To make the correspondence between the position of 
Sb and the enhancement of \F\2 still clearer, we have 
repeated the calculation with an unrealistically small 
width for J : We took /=8.91—0.02i, so that the motion 
of sa and Sb is now given by the dashed lines of Fig. 6. 
For this case, Sb approaches near the real axis from 
below, at a point s « 5 , distinct from s = 4 ; and indeed 
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\F\2 shows—Fig. 11(b)—a definite peak for the ap
propriate W} near s=5. 

The effect of Sb, when present, is masked for two 
reasons: First, even when 72 is small, Sb approaches the 
real axis rather near to 5=4, where the spectral function 
has to vanish in any case; second, as I2 increases, Sb 
moves even nearer to 5=4 whenever it is just below the 
real axis, so that this suppression is aggravated. In an 
actual calculation, therefore, the width may play an 
important part. 

It is instructive to see how the spectral function varies 
at the interesting values of W. For W< 11.62, it is just 
/ , calculated from Eq. (10). Figures 12(a) and (b) show, 
respectively, the real and imaginary parts of /, fr and /». 
The solid curves are for 1=8.91—0.32i, the dashed ones 
for I = 8.91—0.02i. Referring again to Fig. 6, we see that 
as W increases from 9.0, for the W such that sh is just 
below the real axis, both fr and /»• rise steeply from zero 
[see especially the dashed curve in Fig. 12(b) for 
W= 10.0, which shows a separate peak near s=5], while 
for larger values of W this becomes less pronounced. For 
W such that sa is near the real axis, there is a peak near 
sa; nevertheless there is no resultant peak in F. 

VI. DISCUSSION 

We have calculated, from a dispersion relation in s, 
the amplitude F of Fig. 2, taking all particles to be spin-
less isoscalars. The effects of singularities of the weight 
function were examined, and it was found that an en
hancement near 5=4 was expected, but only for a 
restricted range in W near the T+I threshold; the 
magnitude of the effect is very sensitive to the width of 
the unstable particle. 

We now wish to consider F as a function of W rather 
than s— that is, we regard it as a contributor to inelastic 
TN scattering. We can imagine calculating F from a dis
persion relation in Wy the contour of which is taken 
along some path starting at the " two-particle'' threshold 
PP=( /+1) 2 , and going to infinity. Such two particle 
cuts—originating from a state in which one of the 
particles is unstable—have been considered by Zwan-
ziger,15 who, as we mentioned in Sec. I l l , has shown that 
they are two-sheeted, and reached by a path crossing the 
inelastic TTTTN cut. For the present purposes, we may dis
regard the fact that I is complex, and treat this -wl 
cut—and the dispersion relation contour—as being 
along the real axis, just below the physical region, as in 
the usual case. The spectral function <j> then involves the 
5-wave projection of the one-pion-exchange pole in the 
reaction TZ-^TTN (compare footnote 20), and the 
question arises as to whether the Peierls mechanism11 

operates to give an enhancement. It is easy to verify 
that <f> has exactly the singularities given by Eq. (3); in 
the W plane we call them Wa and W 5, and they are 
functions of 5. Their motion as s varies may be read off 
from Fig. 4, and is similar to that of sa and Sb already 
described. Namely, for a range in 5, Wb lies below the 
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FIG. 11. The square of the amplitude of Fig. 2 versus s for various 
values of W. (a) for 7=8.91-0.32* (b) for 7=8.91-0.02*. 

cut, near the real axis, but for no other s do either Wa 

or Wb He near the physical region. This range in s is 
4<s<[ ( /+ l ) 2 — M 2 ] / /«6 . We can express this condi
tion more generally and concisely in terms of the varia
bles s, y and z of Sees. II and I I I : a singularity in y is 
near the physical region if x lies in the range 

- l > * > - « , (14) 

where z is the variable associated with the stable 
external particle. For the case in which the masses are 
real, this region of x corresponds to the part of the 
dashed line in Fig. 4 which is below the real axis.24 It is 
clear that for Eq. (14) to be satisfied, z has to be greater 
than 1, implying that an internal particle is unstable. 

This region is easily interpreted on the Dalitz plot 
picture of the singularities given in Sec. II. Figure 13 is a 
Dalitz plot for \/s and \/t, where \/t is the mass of the 
intermediate irN state. Suppose there are resonances at 
\Zs=p, the p meson, and \/t=I9 the (3,3) isobar. For 
small W=WQ, the two resonance bands \/s= p, \/t=I 
(shown as double lines in Fig. 13) do not intersect in the 
allowed physical region R: The resonances cannot be 

24 The special nature of this region was first mentioned by 
G. Barton and C. Kacser, Nuovo Cimento 21, 593 (1961); see also 
Ref. 6. 
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I l I l l l 1 I I l l l I I I I l 

16 20 24 28 32 36 
S 

(b) 

FIG. 12. The real (a) and the imaginary (b) parts of the spectral 
function in units of ff2 versus s in units of /*2 (]u=pion mass). The 
solid curve is for 7 = 8.91-0.32*, the dashed for 7=8.91-0.02**. 

simultaneously produced for that W. As W increases, 
the point of crossing will appear on the edge of R for 
W—Wb, and then drop off R at W — Wa. As the names 
imply, Wa and Wb are the positions of the logarithmic 
singularities of F as a function of W, so we may call these 
" double excitation'' thresholds. The content of Eq. (14) 
is then that the higher such threshold gives no effect, 
while the lower does so only if the bands cross on the 
boundary R in the lower right-hand segment a shown 
dotted in Fig. 13. 

To illustrate this effect in W, we fix s at a value of 
4.1, and calculate F for a range of values of W, from 
Eqs. (8) and (10). Figure 14 shows \F\2 versus W \ the 

FIG. 13. Dalitz 
plots in the \A> V* 
plane for various 
values of W. 

solid curve is, as before, for 7=8.91—0.32i and the 
dashed one is for 7=8.91—0.02i. For the narrow width 
it is especially clear: Firstly, there is a peak at W^ 10.4, 
which is just the value for which 5=4.1 gives a singu
larity in W near the physical region [the A / S = (4.1)1/2, 
\/t=I bands crossing on a]; secondly, one sees a 
separate shoulder at W^ 10, corresponding to the normal 
threshold 7 + 1 . The latter is just the cusp phenomenon 
of Nauenberg and Pais,12 while the former is an addi
tional enhancement from Wb. Unfortunately, no dis
tinction between the phenomena remains for the realistic 
width, and the effect is much reduced.25 It disappears 

FIG. 14. The square of the amplitude versus W, for s=4.1; the 
solid curve is for 7=8.91-0.32*, the dashed is for 7=8.91-0.02*'. 
The TT7 threshold is at W^IO. 

altogether in both cases as soon as s increased beyond 
s=5, the bands no longer crossing on a. In summary, 
the effect, if observable, should show up as a bump in 
the production process, if the two pions are observed 
near threshold. (See also Ref. 2.) 

Our conclusion is, therefore, that it is only for a 
limited range of the variables, Eq. (14), that a double 
excitation threshold of the triangle graph gives any 
effect. This criterion is quite general, and we may apply 
it to the graph shown in Fig. 15, for example. This 
process appears to be closely related to that originally 
considered by Peierls,11 in that the structure in the W 
channel comes from the nucleon exchange pole in the 
reaction 7r7 —> TL We find, however, that Eq. (14) is 

26 We stress that the actual calculation was not a dispersion 
relation in IF, but one in s, Eq. (8), evaluated for one value of s 
and several values of W; hence it does not depend on assumptions 
regarding analyticity in the W plane. 
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V \ FIG. 15. An approximation for the 
production amplitude wN -*• df. 

not satisfied, as has already been pointed out by 
Goebel,26 so that no enhancement of the inelastic ampli
tude is expected from this graph. 

We ask, finally, what effects may be found in the 
elastic channel, wN —> TN. Consider again the wl state 
as a contributor to the absorptive part of the wN —» irN 
reaction (Fig. 16), as may be a reasonable approxima-

FIG. 16. The rl 
contribution to the 
absorptive part of 
the elastic process. 

tion near the irl threshold. This contribution contains 
the production vertex TN —•> irl, which itself may be 
thought of as proceeding via the wl intermediate state, 
in that energy range, so that it is given by Fig. 14. The 
result is then Fig. 17. Now, we expect the elastic 

FIG. 17. The approxi
mation of Fig. 15 in
serted into Fig. 16. 

amplitude to be enhanced when the production vertex 
is, but we have already seen that, for Fig. IS, it is not. 
It appears unlikely that this single graph can be 
responsible for any effect in the elastic channel. This 
conclusion is essentially the same as that reached by 
different methods by Hwa.27 This is not to say, however, 
that repeated iterations of the singularity, through 
unitarity relations of the type considered by Hwa in 
Sees. VI and VII of his paper, could not lead to the 
formation of a suitable resonance pole.28 This possibility 

26 C. Goebel, University of Wisconsin preprint, 1962 (un
published). 

27 R. C. Hwa, Phys. Rev. 130, 2580 (1963). 
28 R. F. Peierls (private communication). 

is perhaps suggested by the work of Peierls and Tarski,8 

in which the complete solution of a model seems to show 
some double excitation effects. 

Although Eq. (14) is not satisfied for the case just 
discussed, it is not hard to find examples for which it is. 
Consider, for instance, the process of Fig. 18, in which 

FIG. 18. A graph leading 
to enhancement of the 
elastic channel TN —> irl. 

a p is produced, decays, and a irl state is formed. If z 
and % are associated with the external pion and isobar, 
respectively, it is readily verified that Eq. (14) holds. 
The resulting enhancement in W occurs near the Np 
threshold. It is at least possible that this may account 
for the 1688 wN resonance which, as is well known, lies 
close to this threshold.29 This mechanism is then a kind 
of synthesis of the Ball-Frazer and Peierls suggestions. 
It has been observed80 that the levels of the known 
nucleon isobars appear to be separated by the masses of 
certain combinations of pion resonance states. It is 
certainly possible to construct graphs such as Fig. 18, 
satisfying Eq. (14), all giving enhancements near the ap
propriate (nucleon resonance+pion resonance) thresh
old. To decide if this observation provides a basis for 
understanding the empirical level spacing or not would 
require a much more elaborate calculation, in which, at 
least, the essential complications of spin were properly 
treated. 
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